翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cartan integer : ウィキペディア英語版
Cartan matrix
In mathematics, the term Cartan matrix has three meanings. All of these are named after the French mathematician Élie Cartan. In fact, Cartan matrices in the context of Lie algebras were first investigated by Wilhelm Killing, whereas the Killing form is due to Cartan.
== Lie algebras ==

A generalized Cartan matrix is a square matrix A = (a_) with integral entries such that
# For diagonal entries, ''aii'' = 2.
# For non-diagonal entries, a_ \leq 0 .
# a_ = 0 if and only if a_ = 0
# ''A'' can be written as ''DS'', where ''D'' is a diagonal matrix, and ''S'' is a symmetric matrix.
For example, the Cartan matrix for ''G''2 can be decomposed as such:
:
\left (2&-3\\
-1&\;\,\, 2
\end\right
)
= \left ()
\left ().

The third condition is not independent but is really a consequence of the first and fourth conditions.
We can always choose a ''D'' with positive diagonal entries. In that case, if ''S'' in the above decomposition is positive definite, then ''A'' is said to be a Cartan matrix.
The Cartan matrix of a simple Lie algebra is the matrix whose elements are the scalar products
:a_=2
(sometimes called the Cartan integers) where ''ri'' are the simple roots of the algebra. The entries are integral from one of the properties of roots. The first condition follows from the definition, the second from the fact that for i\neq j, r_j-r_i is a root which is a linear combination of the simple roots ''ri'' and ''rj'' with a positive coefficient for ''rj'' and so, the coefficient for ''ri'' has to be nonnegative. The third is true because orthogonality is a symmetric relation. And lastly, let D_= and S_=2(r_i,r_j). Because the simple roots span a Euclidean space, S is positive definite.
Conversely, given a generalized Cartan matrix, one can recover its corresponding Lie algebra. (See Kac–Moody algebra for more details).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cartan matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.